2007 Vol. 9, No. 22 4463–4466

Regiodivergent Metal-Catalyzed Rearrangement of 3-Iminocyclopropenes into N-Fused Heterocycles

Stepan Chuprakov and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, Illinois 60607

vlad@uic.edu

Received July 31, 2007

ABSTRACT

A highly efficient regiodivergent method for the synthesis of N-fused heterocycles via transition-metal-catalyzed rearrangement of 3-iminocyclopropenes has been developed.

Transition-metal-catalyzed chemistry of cyclopropenes¹ benefits from their enormous ring strain.² The highly reactive double bond enjoys a variety of addition³ and cycloaddition⁴ reactions,⁵ while rearrangements allow for construction of various carbo-⁶ and heterocycles.^{6c-g,7} Thus, there are several reports on the metal-catalyzed rearrangements of 3-acyl-cyclopropenes into furans (eq 1).^{6c-g,7} However, to the best

of our knowledge, an analogous metal-catalyzed construction of N-containing heterocycles has no precedents.⁸ Herein, we wish to report the first example of a regiodivergent Cu- and Rh-catalyzed rearrangement of 3-iminocyclopropenes into N-fused pyrroles, heterocyclic scaffolds endowed with a wide array of important biological properties (eq 2).⁹

It deserves mentioning that, until recently, there were no convenient approaches toward C-3 imino-substituted cyclopropenes, potentially useful building blocks for organic chemistry. Recently, we found that 7-halo-substituted N-fused triazoles 1 could be used as surrogates for α -imino

- (1) For recent reviews, see: (a) Rubin, M.; Rubina, M.; Gevorgyan, V. *Chem. Rev.* **2007**, *107*, 3117. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. *Synthesis* **2006**, 1221. (c) Fox, J. M.; Yan, N. *Curr. Org. Chem.* **2005**, *9*, 710.
- (2) For discussion on the strain energy in small rings, see, for example: Back, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, 126, 4444.
- (3) For carbometalations, see: (a) Liao, L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322. (b) Liu, X.; Fox, J. M. J. Am. Chem. Soc. 2006, 128, 5600. For hydrometalations, see: (c) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2002, 124, 11566. (d) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198. (e) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2004, 126, 3688.
- (4) For selected examples, see: (a) Diev, V. V.; Kostikov, R. R.; Gleiter, R.; Molchanov, A. P. J. Org. Chem. 2006, 71, 4066. (b) Ma, S.; Zhang, J.; Lu, L.; Jin, X.; Cai, Y.; Hou, H. Chem. Commun. 2005, 909. (c) Palleria, M. K.; Fox, J. M. Org. Lett. 2005, 7, 3593. (d) Weatherhead-Kloster, R. A.; Corey, E. J. Org. Lett. 2006, 8, 171. (e) Padwa, A.; Kulkarni, Y. S.; Terry, L. W. J. Org. Chem. 1990, 55, 2478.
- (5) For coupling reactions, see: (a) Yin, J.; Chisholm, J. D. *Chem. Commun.* **2006**, 632. (b) Chuprakov, S.; Rubin, M.; Gevorgyan, V. *J. Am. Chem. Soc.* **2005**, *127*, 3714.

diazocompounds¹¹ in the Rh(II)-catalyzed chemoselective reaction with terminal alkynes to produce indolizines **2** or 3-(2-pyridyl)cyclopropenes **3**, depending upon catalyst source (eq 3).¹⁰ The presence of the halogen substituent in **1** was crucial, as no reaction occurred with triazoles possessing H or alkyl groups at C-7.¹⁰ Although the direct Rh(II) perfluorobutyrate-catalyzed transannulation of triazoles provided a rapid and convenient approach toward indolizines,¹⁰ it was not without limitations. Thus, only triazoles that possessed strong electron-withdrawing group at C-3 ($R^2 = CO_2R$) were efficient in this transannulation reaction. We hypothesized that, potentially, the rearrangement of 3-(2-pyridyl)cyclopropenes **3** could provide alternative routes to indolizines **2** as shown in eq 2.

To this end, we tested the generality of the Rh₂(S-DOSP)₂-catalyzed cyclopropenation of triazoles with alkynes. To our delight, we found that a variety of pyridyl-containing cyclopropenes can easily be synthesized in good yields via this method (Table 1).¹² Thus, triazoles **1a**–**d** possessing both electron-rich and electron-deficient aryl substituents at C-3 reacted smoothly with various alkyl-, aryl-, and alkenyl-containing alkynes to afford corresponding cyclopropenes **3** chemoselectively (Table 1). Cyclopropenation of 3-carbomethoxytriazole **1e** proceeded uneventfully, producing corresponding cyclopropenes **3** in good to excellent yields (entries 9–12, 14).

Naturally, having in hand this convenient method for the synthesis of 3-iminocyclopropenes, we evaluated our hy-

(8) For photochemical isomerization, see: Zimmerman, H. E.; Wright, C. W. J. Am. Chem. Soc. 1992, 114, 6603.

(11) For cyclopropanation with 2-pyridyl diazo compounds, see: Davies, H. M. L.; Townsend, R. J. J. Org. Chem. 2001, 66, 6595.

Table 1. Rh₂(S-DOSP)₄-Catalyzed Cyclopropenation of Pyridotriazoles with Alkynes

no.	\mathbb{R}^1	\mathbb{R}^2		\mathbb{R}^3		yield,ª %
1	Cl	Ph	1a	Ph	3a	81
2	Cl	Ph	1a	$p ext{-}\mathrm{OMeC_6H_4}$	3b	79
3	C1	Ph	1a	$p ext{-}\mathrm{CO}_2\mathrm{MeC}_6\mathrm{H}_4$	3c	65
4	\mathbf{Br}	Ph	1b	Ph	3d	88^b
5	Cl	$p ext{-}\mathrm{OMeC}_6\mathrm{H}_4$	1c	Ph	3e	67
6	C1	$p ext{-}\mathrm{OMeC_6H_4}$	1c	o-tolyl	3f	45
7	C1	$p ext{-} ext{CF}_3 ext{C}_6 ext{H}_4$	1d	Ph	3g	68
8	C1	$p ext{-} ext{CF}_3 ext{C}_6 ext{H}_4$	1d	1-cyclohexenyl	3h	93
9	C1	$\mathrm{CO_2Me}$	1 e	p-tolyl	3i	93^c
10	Cl	$\mathrm{CO_2Me}$	1 e	$p ext{-}\mathrm{OMeC_6H_4}$	3j	67
11	C1	$\mathrm{CO_2Me}$	1 e	$p ext{-}\mathrm{CO}_2\mathrm{MeC}_6\mathrm{H}_4$	3k	72
12	C1	$\mathrm{CO_2Me}$	1 e	$m\text{-}\mathrm{CO}_2\mathrm{MeC}_6\mathrm{H}_4$	31	87
13	\mathbf{Br}	Ph	1b	n-butyl 3n		69
14	C1	$\mathrm{CO_2Me}$	1 e	Ph	3n	86^d
15	Cl	Ph	1a	$(CH_2)_3Cl$	3o	68

^a Isolated yield. ^b 8% ee. ^c 86% ee. ^d 84% ee.

pothesis on the cyclopropene into N-fused pyrrole transformation (eq 2). To this end, we tested rearrangement of cyclopropene **3a** into indolizines **2a** and **4a** in the presence of a series of transition-metal catalysts (Table 2). The

Table 2. Metal-Catalyzed Rearrangement of Cyclopropene 3a

no.	catalyst	$T(^{\circ}\mathrm{C})$	2a:4a ratio ^a	yield, b %
1	$PdCl_2$	rt	2:1	23
2	$PtCl_2$	$\mathbf{r}\mathbf{t}$	4:1	38
3	$Pt(PPh_3)_4$	60	5:1	86
4	$NiCl_2$	60		0^c
5	$RuCl_2(PPh_3)_3$	60	8:1	32
6	$[Ir(cod)py(PCy_3)]PF_6 \\$	60	>99:1	49
7	RhCl(PPh ₃) ₃	rt	>99:1	92
8	$Rh_2(pfb)_4$	\mathbf{rt}^d	<1:99	31
9	AgSbF_{6}	60		0^c
10	$AuCl_3$	60^d		0^c
11	CuI	\mathbf{rt}	<1:99	78

 $[^]a$ NMR ratio. b Combined NMR yield of both isomers. c A mixture of unidentified products formed. d Dichloroethane used as solvent.

employment of Pd(II) and Pt(II) chlorides in DMF at room temperature resulted in low yields and moderate regioselectivity of rearrangement (entries 1 and 2). The yield was improved upon switching to Pt(0) complex (entry 3); however, the selectivity remained unsatisfactory. Gratify-

4464 Org. Lett., Vol. 9, No. 22, 2007

^{(6) (}a) Padwa, A.; Blacklock, T.; Loza, R. J. Am. Chem. Soc. 1981, 103, 2404. (b) Padwa, A.; Blackbock, T. J.; Loza, R. J. Org. Chem. 1982, 47, 3712. (c) Müller, P.; Pautex, N.; Doyle, M. P.; Baheri, V. Helv. Chim. Acta 1990, 73, 1233. (d) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631. (e) Padwa, A.; Kassir, J. M.; Xu, S. L. J. Org. Chem. 1997, 62, 1642. (f) Müller, P.; Gränicher, C. Helv. Chim. Acta 1993, 76, 521. (g) Müller, P.; Gränicher, C. Helv. Chim. Acta 1995, 78, 129.

^{(7) (}a) Tomilov, Y. V.; Shapiro, E. A.; Protopopova, M. N.; Ioffe, A. I.; Dolgii, I. E.; Nefedov, O. M. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1985**, 631. (b) Davies, H. M. L.; Romines, K. R. *Tetrahedron* **1988**, 44, 3343. (c) Padwa, A.; Kassir, J. M.; Xu, S. L. *J. Org. Chem.* **1991**, 56, 6971. (d) Ma, S.; Zhang, J. *J. Am. Chem. Soc.* **2003**, *125*, 12386.

⁽⁹⁾ For selected examples on biological activity of indolizines, see: (a) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. *J. Med. Chem.* 1996, 39, 3636. (b) Gundersen, L.-L.; Malterud, K. E.; Negussie, A. H.; Rise, F.; Teklu, S.; Østby, O. B. *Bioorg. Med. Chem.* 2003, 11, 5409.

⁽¹⁰⁾ Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 4757.

⁽¹²⁾ Despite the efficiency of $Rh_2(S\text{-DOSP})_4$ in enantioselective cyclopropenations, 13 we observed very low levels of enantioselectivity in synthesis of 3-aryl-substituted cyclopropenes. However, selected examples indicate highly enantioselective cyclopropenation in a case of 3-carbomethoxy derivatives (see Table 1).

ingly, we found that the employment of Ir(I) and Rh(I) complexes led to the highly regioselective isomerization of **3a** into **2a** (entries 6 and 7) in moderate and excellent yields, respectively. Interestingly, when Rh(II) perfluorobutyrate was used as a catalyst, another regioisomer **4a**, with the substituent at C-2 position, ^{14,15} was formed as a single product, though in low yield (entry 8). AgSbF₆ and Au(III) chloride were completely inefficient catalysts for this transformation (entries 9 and 10). However, Cu(I) iodide smoothly isomerized **3a** into indolizine **4a** in good yield and excellent regioselectivity (entry 11, Table 2).

Next, we explored the scope of this novel regiodivergent rearrangement methodology. First, rearrangement of a series of 3-(2-pyridyl)cyclopropenes into 1,3-disubstituted indolizines 2 was tested under Rh(I) catalysis (Table 3). It was found that cyclopropenes possessing both electron-rich and electrondeficient aryl groups¹⁷ at position C-3 and at the double bond underwent clean and regioselective rearrangement into indolizines 2. Notably, 1-alkenyl- (entry 8) and Br-containing (entry 4) substrates were found to be equally efficient in this reaction, as well. Thus, the Rh(I)-catalyzed isomerization of cyclopropenes compliments the direct transannulation protocol,¹⁰ providing access to a wider selection of 1,3substituted indolizines possessing not only ester but also various aryl groups at C-3. Attempts to perform the analogous transformation with 3-carbomethoxycyclopropene **3n** produced only a small amount of the corresponding indolizine 5 together with furan 6 as major product of this reaction (eq 4). Formation of furan 6 in the presence of Wilkinson's catalyst is consistent with earlier observations (eq 1).6c-g,7

After successful synthesis of 1,3-disubstituted indolizines **2** (Table 3), we turned our attention to regioselective formation of valuble^{14,15} 1,2-substituted N-fused pyrroles **4** via the Cu(I)-catalyzed rearrangement. To our delight, a variety of 3-carbomethoxy- and 3-arylcyclopropenes reacted smoothly to produce indolizines **4** in good to excellent yields (Table 4). Electron-rich (entries 2 and 3) and electron-deficient (entries 4 and 5) aryl groups and alkyl substituents (entries 7 and 8) at the double bond of cyclopropene were equally well tolerated in this reaction. Gratifyingly, this

Table 3. Rh(I)-Catalyzed Rearrangement of Cyclopropenes

	3 R	3	DMF, π Υ R ¹ 2	R ³	
no.	cyclopropene 3		product 2		yield ^a , %
1	CI N Ph	3a	Ph N Cl Ph Ph	2a	85
2	CI N Ph	3b	CI OMe	2b	91
3	CI N Ph	3c	Ph Cl CO ₂ Me	2c	79
4	Br N Ph	3d	Ph N Br Ph OMe	2d	87
5	CI N Ph	3e	N Ph OMe	2e	81
6	CI N OMe	3f	N Me	2f	93
7	CI N CF3	3g	CI Ph CF3	2g	84
8	CI N CF3	3h	CI	2h	88
a To	olated viold				

rearrangement mode worked well with different 3-heteroaryl-cyclopropenes, such as oxazole¹⁸ and isoquinoline¹⁹ derivatives **3p** and **3r**, giving access to their fused analogues **4j** and **4k** in good yields (entries 10 and 11).

We propose the following mechanistic rationale for the novel regiodivergent rearrangement of imino cyclopropenes 3 into fused pyrroloheterocycles 2 and 4 (Scheme 1). Cyclopropene 3, in the presence of Rh(I) complex, undergoes ring opening to produce the most substituted carbenoid 5.6c-e.7c A nucleophilic attack by nitrogen lone pair on

Org. Lett., Vol. 9, No. 22, **2007**

a Isolated yield.

⁽¹³⁾ Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233.

⁽¹⁴⁾ The C-2 site of indolizine is unfunctionalizable position and a substituent must be introduced prior to cyclization (see ref 15).

⁽¹⁵⁾ For a review, see: (a) Behnisch, R.; Behnisch, P.; Eggenweiler, M.; Wallenhorst, T. In *Houben-Weyl*; Kreher, R. P., Ed.; Georg Thieme Verlag Stuttgart: New York, 1994; Vol.E6a/2a, pp 323–451. See also: (b) Seregin, I. V.; Gevorgyan, V. *J. Am. Chem. Soc.* **2006**, *128*, 12050.

⁽¹⁶⁾ For recent review on gold catalysis, see: Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.

⁽¹⁷⁾ Substrates, possessing alkyl substituents at C-1 position of cyclopropene ring produced only trace amounts of products under these reaction conditions.

⁽¹⁸⁾ For the synthesis of oxazolyl diazo compound, see ref 11.

⁽¹⁹⁾ Prepared via cyclopropenation of corresponding triazoloisoquinoline analogously to pyridyl derivatives $3\mathbf{a}-\mathbf{o}$ (see the Supporting Information for details).

Table 4. Cu(I)-Catalyzed Rearrangement of Cyclopropenes

carbenoid center leads to the formation of zwitterion **7**. A subsequent elimination of the metal furnishes regioisomer **2**. In contrast, when Cu(I) catalyst is used, formation of less substituted carbenoid **6** occurs, 6c,f,g,7a cyclization of which via a zwitterion **10** leads to the product **4** selectively. Alternatively, regioisomers **2** and **4** may arise via a reductive elimination of aza metalacycles **8** and **9**, respectively, which in turn are formed via a 6π -electrocyclization 6e,20 of carbenoids **5** and **6**, or directly from cyclopropene **3**, upon regioselective oxidative addition of the metal. 6e,7c It was also

Scheme 1. Mechanistic Rationale for Regiodivergent Rearrangement Reactions

proposed that isomeric carbenoids $\bf 5$ and $\bf 6$ could interconvert through the cycloaddition/cycloreversion equilibrium. 6d,e We evaluated a possibility of such equilibrium by performing a crossover experiment in the presence of 5 equiv of "external" alkyne. However, no crossover products were detected, thus suggesting independent routes for the formation of $\bf 5$ and $\bf 6$.

In summary, we have developed a highly efficient synthesis of 1,3- and 1,2-disubstituted N-fused pyrroloheterocycles, 9,21 including indolizines, pyrrolooxazole, and pyrroloisoquinoline, via a novel regiodivergent transition-metal-catalyzed rearrangement of 3-iminocyclopropenes. We also demonstrated that the latter can conviniently be synthesized from 1,2,3-triazoles. 23

Acknowledgment. The support of the National Institutes of Health (GM-64444) and the National Science Foundation (CHE-0710749) is gratefully acknowledged.

Supporting Information Available: Preparative procedures and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL702084F

4466 Org. Lett., Vol. 9, No. 22, 2007

⁽²⁰⁾ Hoye, T. R.; Dinsmore, C. J.; Johnson, D. S.; Korkowski, P. F. J. Org. Chem. **1990**, *55*, 4518.

⁽²¹⁾ Heterocyclic halides may be further functionalized via cross-coupling reactions. ²² We have also shown (see ref 10) that halogen can be efficiently removed from the products.

⁽²²⁾ For a review, see: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.

⁽²³⁾ Halogen-free 3-(2-pyridyl)cyclopropenes were not examined in the described rearrangements as they were not available via cyclopropenation of pyridotriazoles (see ref 10).